Statistical parsing in the third millenium:* A brief history

*We'll take the millenium as beginning from 2000 - | know that this is officially wrong

Christopher Manning

Charniak (2000) NAACL: A Maximum-Entropy-Inspired Parser

- There was nothing maximum entropy about it. It was a cleverly smoothed generative model
- Smoothes estimates by smoothing conditional terms (which are a bit like maxent features):

 $P(t|l,l_p,t_p,l_g)$

- Biggest improvement is actually generative model predicts head tag first and then does
- Gets 90.1% LP/LR F score on sentences ≤ 40 wds

Klein and Manning (2002/2003): 📸 NIPS, NAACL, ACL papers

- · Showed that one can successfully use a factored model to give effectively $O(n^3)$ parsing of lexicalized grammars by factoring phrase structure and lexical dependencies
- Showed how to do fast, guaranteed model optimal parsing of unlexicalized and lexicalized factored models using outside estimates and A* search
- Showed that lexicalization had been overemphasized while grammatical features and grammar refinement could give similar performance (86.3% LP LR F1)
- · None of this actually sped up or improved parsers

Early discriminative parsing at 🚵 Stanford

- · Toutanova et al. (2002/2005) shows that a discriminative (maxent reranking) parser gives substantial gains over a generative parser in a stochastic HPSG grammar based parsing task
- Taskar et al. (2004 EMNLP) show how to do joint discriminative SVM-style ("max margin) parsing building a phrase structure tree also conditioned on words in $O(n^3)$ time
 - In practice, totally impractically slow. Results were never demonstrated on sentences longer than 15 words

Charniak and Johnson (2005 ACL): Coarse-to-fine n-best parsing and MaxEnt discriminative reranking

- Builds a maxent discriminative reranker over parses produced by a (slightly bugfixed and improved version of Charniak (2000).
- Gets 50 best parses from Charniak (2000) parser
 - Doing this exploits the "coarse-to-fine" idea to heuristically find good candidates
- Maxent model for reranking uses heads, etc. as generative model, but also nice linguistic features:
 - Conjunct parallelism
 - Right branching preference
- Heaviness (length) of constituents factored in
- Gets 91% LP/LR F1 (on all sentences! up to 80 wd)

McDonald et al. (2005 ACL):

Online Large-Margin Training of Dependency Parsers

- Builds a discriminative dependency parser
 - A different way to keep to $O(n^3)$ time
- · Can again condition on rich features in that
- · Again a true parser, not a n-best reranker
 - Use of online large-margin training methods makes this way more practical than the Taskar et al. work
 - · Parser is faster than Charniak's!
- Doesn't can't report constituent LP/LR, but evaluating dependencies correct:
 - · Accuracy is similar to but a fraction below Collins:
 - 90.9% vs. 91.4%